Scientific knowledge is possible with small-sample classification
نویسندگان
چکیده
منابع مشابه
Scientific knowledge is possible with small-sample classification
: A typical small-sample biomarker classification paper discriminates between types of pathology based on, say, 30,000 genes and a small labeled sample of less than 100 points. Some classification rule is used to design the classifier from this data, but we are given no good reason or conditions under which this algorithm should perform well. An error estimation rule is used to estimate the cla...
متن کاملIs cross-validation valid for small-sample microarray classification?
MOTIVATION Microarray classification typically possesses two striking attributes: (1) classifier design and error estimation are based on remarkably small samples and (2) cross-validation error estimation is employed in the majority of the papers. Thus, it is necessary to have a quantifiable understanding of the behavior of cross-validation in the context of very small samples. RESULTS An ext...
متن کاملSmall Sample Issues for Microarray-Based Classification
In order to study the molecular biological differences between normal and diseased tissues, it is desirable to perform classification among diseases and stages of disease using microarray-based gene-expression values. Owing to the limited number of microarrays typically used in these studies, serious issues arise with respect to the design, performance and analysis of classifiers based on micro...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Bioinformatics and Systems Biology
سال: 2013
ISSN: 1687-4153
DOI: 10.1186/1687-4153-2013-10